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The proof of (7) (using the unproved conjecture (3)) would be similar to the 
proof of our theorem. Instead of the decomposition (5) we would have to put a, = 
CiD, where all prime factors of Ci are less than log n and all prime factors of Di are 
> log n. We suppress the details. 

Very likely 

(8) lim log (ft(n))* log log n 
n=cc log n 

exists and perhaps it might be possible to determine its value, but it will probably 
not be possible to express ft(n) by a simple function of n and t (even for t = 3). 

If t is large compared to n our method used in the proof of our theorem no longer 
gives a good estimation, but it is not difficult to prove by a different method the 
following result. Let 1 ? a, < a2 < . . . < a, ? n, 1 = Cn be given, then there are 
always nEc integers ai1, *- , air which have pairwise the same common factor 
(Ec depends only on C), but we do not investigate this question here any further. 

I have not been able to decide if to every a > 0 there is an no (a) so that if 
n > no (a) and 

1 ? a, < a2 < *-- < a, ?< n, I> an, 

is any sequence of integers, then there always are three a's which have pairwise the 
same least common multiple. This is certainly true (and trivial) if a is close enough 
to 1; perhaps the whole question is trivial and I overlooked an obvious approach. 
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On Maximal Gaps between Successive Primes 

By Daniel Shanks 

In personal correspondence Paul A. Carlson asked the author if he could give a 
rough "ball-park" estinmate of where one would first find a run of a million or more 
consecutive composite integers. For notation let us define p(g) to be the first prime 
that follows a gap of g or more consecutive composites. Thus p(l) = 5, p(2) = 
p(3) )-11, p(4) = p(5) = 29, p (6) = p(7) = 97, etc. We seek to estimate p(106). 

Conversely, by g(n) we mean the largest gap that occurs below any prime p _ n. 
We may call these values of g maximal gaps. 

That p(g) is finite for every g is well known. The famous proof by Lucas [1] 
merely notes that the g consecutive integers: 

(g + 1)! + 2, (g + 1)! + 3, (g + 1)! + 4, *.* , (g 1)! + g + 1 
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are divisible, respectively, by 2, 3, 4, etc. Therefore p(g) ? the first prime greater 
than (g + 1)( +g! 1). 

Since, by Bertrand's "Postulate," there is always a primne between any N and 
2N we have the rigorous, but very weak partial answer to Carlson's question: 

(1) p(106) < 2000002(1000000! 1 + 1) = 1.65. 105565715. 

MV1ore generally, from Stirling's formula, we would have, for large g: 

(2) log p(g) < g log g. 

A more sophisticated proof that p(g) is always finite, cf. [2], utilizes the Prime 
Number Theorem. Assume, on the contrary, that all gaps are less than g. Then in 
every g consecutive integers there is at least one prime. Therefore, if 1r(p) is the 
number of primes _ p, we have 

7r(p) > P. 
g 

But this contradicts the Prime Number Theorem: 

7r(P) 
P 

log p 
since log p ---c*. 

In order to use such ideas to obtain a bound on p(g), however, the Prime Num- 
ber Theorem as given above does not suffice, since bounds are needed for the error, 
7r(p) - p/log p. Particularly neat bounds have been obtained recently by Rosser 
and Schoenfeld [3]. They give 

1 < 1r(p) < - (p > 67). logp- 2 log p- 2 

Thus the average difference between successive primes up to p, which is given by 
p/r(p), is also bounded: 

log p- < p < log p- (p _ 67). 
7r(p)2 

Since a maximal difference g + 1 must exceed the average difference we therefore 
have 

(3) log p(g) < g + 2 (p > 67). 

In particular, we lave 

(4) p(106) < 3.70. 10434295. 

Here, again, we may declare our dissatisfaction with these bounds. While they 
are improved somewhat over (2) and (1), the right side of (3) is surely of too high 
an order.* Correspondingly, the right side of (4) is surely a gross over-estimate. 
It is not in the right "ball park," and thus does not satisfactorily answer Carlson's 

* Utilizing difficult analysis many authors have obtained slightly better bounds. As is 
usual in prime number theory these hard-to-come-by estimates are disappointingly weak in 
comparison with what are conjectured to be the true results. See [101 for a survey of these 
investigations. 
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question. A heuristic probability argument suggests instead the conjecture: 

(5) log p(g) \9> 

but to obtain this result we must forego an exact treatment, and proceed as fol- 
lows. 

Consider each interval of length g contained in a much larger interval from 1 to 
N. What is the expected number, call it E(N, g), of these g-length intervals such 
that all g numbers therein are composite? By the Prime Number Theorem: 

r(N) N dx 
2log x' 

the probability that x is composite is (1 - 1/log x). For an interval of g numbers 
surrounding x, with g << x, the probability that all g numbers are composite is 
(1 - 1/log x)Q. Thus we estimate 

E(N,g) J o1g) (ix. 

Let u log x. Then 

E(N,g)= logI 
N 1 e du. 

logo K a 

Since 

(ig 
\ 1 

log(1--)= --- -2 + O(U3) 
\U/ u 2u2 

we have 
log N 

E(N, g) = eu-g/u-g/2u2+o(u-3) du. 
log o 

Now let u = \g9 + s and 

log N = \ga + A. 

Thus 

E(N, g7) = 
A 2s-112+0(11g) 

If g is large and A = we have 

E(N, g) 2 2 

while if g is large and A = 4 + log 2/2 = 0.59657, we have 

E(N, g) 1. 

If A is increased beyond 0.59657, E(N, g) rises rapidly, while if A is diminished 
below 0.25, E(N, g) falls rapidly. Because of this rapid variation with A we there- 
fore expect log p(g) to be in the neighborhood of V\/ + 0.6. It follows that 
log p(g)/V\g should approach 1 as g oo. But this is the conjectured relation (5). 
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TABLE 1 

Maximal Gaps 

g p(g) log p(g)/V\g 

1 5 1.609 
3 11 1.384 
5 29 1.506 
7 97 1.729 

13 127 1.344 
17 541 1.526 
19 907 1.562 
21 1151 1.538 
33 1361 1.256 
35 9587 1.550 
43 15727 1.474 
51 19661 1.384 
71 31469 1.229 
85 156007 1.297 
95 360749 1.313 

111 370373 1.217 
113 492227 1.233 
117 1349651 1.305 
131 1357333 1.234 
147 2010881 1.197 
153 4652507 1.241 
179 17051887 1.245 
209 20831533 1.166 
219 47326913 1.194 

Professor Paul T. Bateman has kindly informed us that H. Cramer long ago gave 
a similar conjecture. But Cramer's formulation is somewhat weaker; he does not 
assert asymptotic equality. He writes [4, p. 27]: 

(5a) lim sup (log pn)2 

where Pn is the nth prime. This implies that some subsequence of log p(g) is asymp- 
totic to V/g, but leaves it open whether other subsequences may not behave dif- 
ferently. It is the stronger assertion (5) that we wish to utilize here. 

Empirically, the exact facts are known out to g = 209 thanks to an often-quoted 
but still not published study of D. H. Lehmer [5] concerning the distribution of 
primes out to 37 106. Previously, less complete tables were given by Western [6] 
and by Glaisher [7], and subsequently a larger gap of g = 219 was included in a 
table of Appel and Rosser [8]. There is no gap >219 up to 108. From these results 
(slightly reinterpreted) we have given in Table 1 a list of maximal gaps up to g = 
219. In the last column we list the quantities log p(g)I/Vg, and these are plotted 
versus V/g in Fig. 1. The agreement with the foregoing prediction is satisfactory; 
aside from the expected fluctuations the behavior of the graph is consistent with 
the expected slow convergence to unity. 

Allowing a generous safety factor one can therefore estimate, with considerable 
confidence, that 
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FIG. 1. The Maximal Gap Conjecture 

(6) 103 < p(106) < 000. 

Almost surely p(106) is greater than a googol, that is, 10"'. On the other hand [9], 
eight known Mersenne primes, namely Mp = 2- - 1 for p = 2203, 2281, 3217, 
4253, 4423, 9689, 9941, and 11213, exceed 10600, and almost surely p( lo6) is less than 
any of these. In fact, it is probable that somewhere below M11213 there is a gap of 
fifty million or more consecutive composites. 
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Iteration of Triangular Matrices 

By Lester J. Senechalle 

1. Introduction. In order to calculate scalar functions of a matrix A, it is de- 
sirable to have a simple formiula for the integral iterates A' of A. Such a formllula 
was first discovered by Sylvester [1], who expressed A' as, essentially, a divided 
difference of the function f(x) = x'. However, Sylvester's formula applies only to 
the case where the eigenvalues of A are distinct; the case of multiple eigenvalues 
was subsequently treated by Buchheirn [2], and leads to confluent divided dif- 
ferences. 

In this paper we give an especially simiiple formula for A' when A is an upper 
triangular matrix. Our algorithmii yields only the upper right hand entry of A', 
but this is adequate since every nonzero element of A' is in fact the upper right- 
hand entry of the nth iterate of some triangular submatrix of A. 

2. Notation. Let [ai] be an in X in upper triangular matrix, so that a, 0 
if i > j, and for any nonnegative integer n let [a n)] denote the nth iterate of [aij] 
under matrix multiplication. The matrix [aj 7] is also upper triangular. Mloreover, 
[a(?)] = [b6j], and [a.n+i)] = [Z=1 a() ak]] 

If (X1, , Xk) is a chain of complex numbers, then C(X1, , Xk) denotes the 
set of all subehains which have X1 as their first element and Xk as their last element. 
If k > 2 and i < k, then Ci(X X, ... , X,) denotes the set of chains belonging to 
C(X1, *... , Xk) which have Xi as their next to last element. Thus C(X1, - , SXk) = 

U7jIl CQ(X1, Xk ) is a decoitiposition of C(X1, , Sk) into mutually disjoint 
subsets. For examiiple, C(X1, X2, X3, X4) = {(X1, X4), (X1, X2, X4), (X1, X3, X4), 

(Xl, X2, X3, X4)} and C3(X1, X2, X3, X4) = {(X1, X3, X4), (Xl, X2 X3 4) I 

If -y = (X X , SXk) is a chain of distinct complex numbers and n is a nonnega- 
tive integer, then qf,(-y) denotes the divided difference [X1 ... XkJ of the function 
f(x) = xn [3, Chapter 1]. Thus 

k Xi 

qn(-Y) -E k i 

i=1 fi (xi- x) 

In particular, q,n(-y) = 0 for 0 _ n < k, and qn( Y) = Xln if _y = (X1). Furthermore, 
if k > 2, qn/(-y) is defined as qn(y'), where y' = (X1, , Xk-1) 
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